

SPWLA SAUDI ARABIA CHAPTER (SAC) 9th Topical Workshop

CORING AND CORE ANALYSIS: CHALLENGES AND BEST PRACTICES

Virtual Workshop Series (Feb, Mar & Apr 2021)

The Basics of Reservoir Fluid Sampling and Analysis

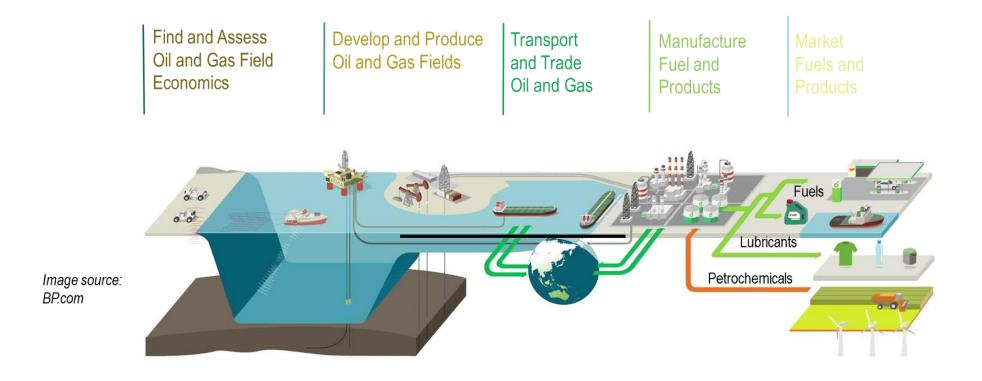
John Nighswander, Bashar Qassim, Matt Flannery, Patrick Hanna, and Abul Jamaluddin

March 2021

Agenda

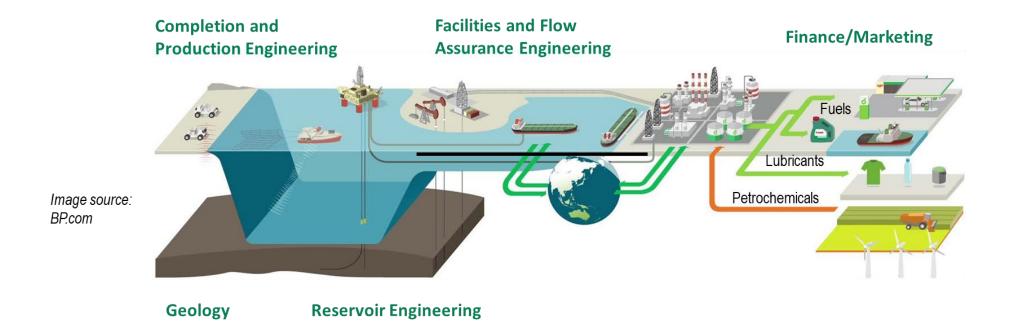
1 Role of Fluid Properties in the Oil and Gas Industry

2 Overview of Reservoir Fluid Modeling

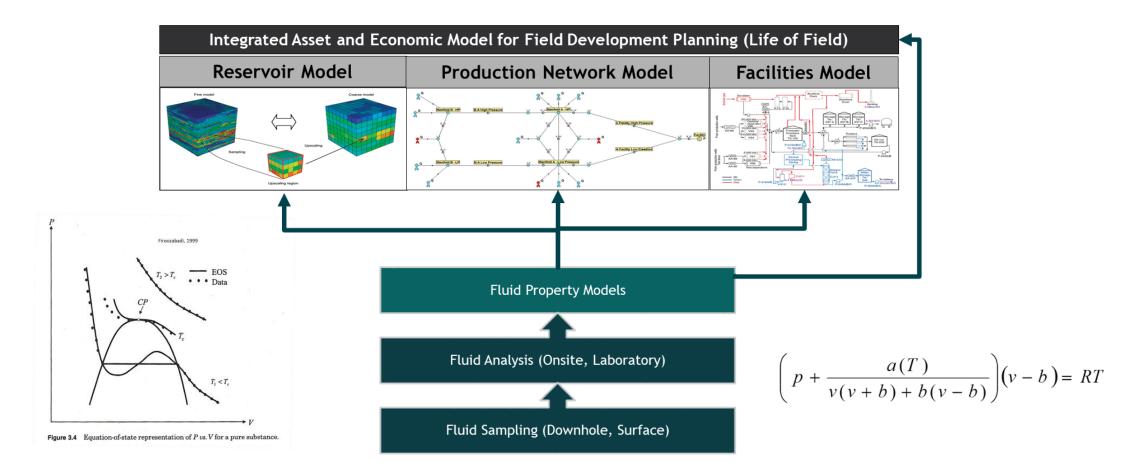

3 Overview of Reservoir Fluid Property Measurements

4 Overview Reservoir Fluid Sampling

SPWLA SAC WORKSHOP - CORING AND CORE ANALYSIS: CHALLENGES AND BEST PRACTICES



Oil and Gas Companies, Find, Produce and Sell "Fluids



Fluid Property Data is Required for Many Workflows

Fluid Properties Input to Integrated Asset Modelling

SPWLA SAC WORKSHOP - CORING AND CORE ANALYSIS: CHALLENGES AND BEST PRACTICES

Fluid Analysis Requirements

Laboratory Fluid Analysis

Fluid Sampling (Downhole, Surface)

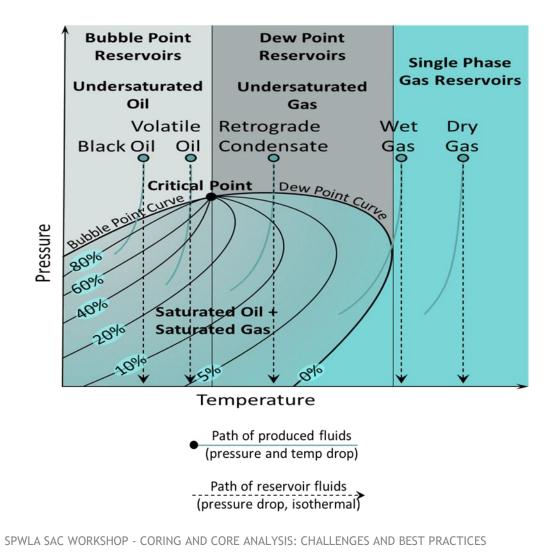
Pressure-Volume-Temperature (PVT) Characterization Extended carbon number composition Reservoir AND surface volumetric properties Saturation pressure, Viscosity, Density

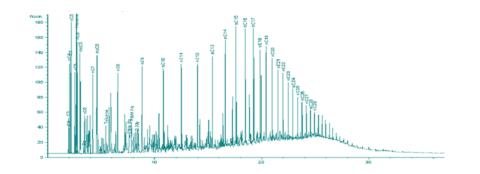
Flow Assurance Fluid Characterization

Wax, asphaltenes, scale, hydrates, corrosion

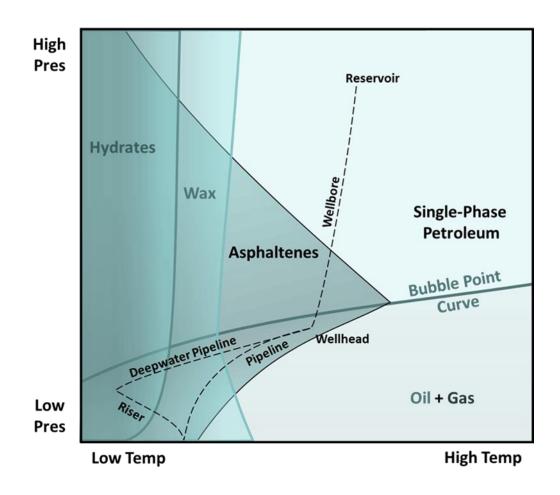
3

Gas Miscible EOR


Conventional and unconventional Reservoir Fluid - Injection Gas phase behavior

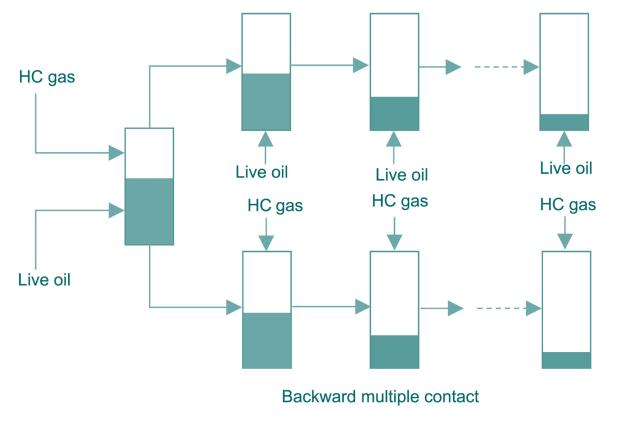

Production Allocation - line condition PVT Composition change vs time - trace elements

Reservoir Fluid PVT Behavior and Composition



	Dry	Wet	Gas	Volatile	Black
	Gas	Gas	Condensate	Oil	Oil
N2	0.3	0.2	3.68	1.21	0.36
CO2	1.1	2.1	1.28	2.10	0.29
C1	90.0	85.0	85.2	60.50	23.97
C2	4.9	4.7	5.36	7.75	6.42
C3	1.7	3.2	1.75	4.75	7.64
i-C4	0.6	1.2	0.36	2.27	1.79
n-C4	0.5	1.0	0.46	2.01	5.29
i-C5	0.3	0.9	0.19	1.96	2.98
n-C5	0.2	0.8	0.16	0.88	3.27
C6	0.2	0.3	0.22	1.90	4.85
C7	+0.2	+0.6	0.39	2.51	7.09
C8			0.44	2.45	7.67
C9			0.20	1.68	5.19
C10			0.12	1.45	4.47
C11			0.06	1.05	2.96
C12+			0.15	5.53	15.76

Fluid Properties for Production Simulation Workflows (Flow Assurance)



Gas Miscible EOR - Miscibility Mechanisms

Forward multiple contact

https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.2286

Factors Influencing the Quality of Sampling Operations

- Reservoir conditions
- Well conditions
- Fluid type
- Sampling methods, equipment and operating procedures
 - Competency of field engineers
 - On-site transfer
 - On-site measurements/methods
 - Laboratory practices
 - Calibration of instruments
 - Quality of analytical equipment

'Bad' sample = 'bad' results (irrespective of lab quality, people)

SPWLA SAC WORKSHOP - CORING AND CORE ANALYSIS: CHALLENGES AND BEST PRACTICES

g proced

Gravity Settling Section

Separator ____

Water Out

Fluid Property Models

Fluid Analysis (Onsite, Laboratory)

Fluid Sampling (Downhole, Surface)

Separator

Reservoir Fluid Sampling Operations

Exploration, Appraisal, and Development Wells

Sampling Conveyance Method Options

1. <u>Drilling Mud</u> Surface Mud Gas Logging

- Gas Extraction
- Sampling for on-site analysis
- Depth and type of hydrocarbon
- IsoTube sampling

Handle

so ube

Outlet pressure

Inlet Pressure


1/4" NPT Fitting

SPWLA SAC WORKSHOP - CORING AND CORE ANALYSIS: CHALLENGES AND BEST PRACTICES

2. Drill String

Downhole Formation Testing While Drilling

- Done while tripping
- Open Hole sampling probe
- Depth set by mud gas logging and LWD data
- Single Phase/Standard Samples
- Downhole Fluid Analysis

3. Open Hole Wireline

Downhole Formation Testing

- Open Hole Sample probe(s)
- Depth set by mud gas logging, LWD, and open hole logs
- Single Phase/Standard Samples
- Downhole Fluid Analysis

4. <u>DST String (Cased Hole)</u> Well Testing Operations

- Downhole sample carrier
- Single Phase/Standard Samples
- Limited Telemetry

Surface Separator Sampling

- Stable producing GOR
- Separator gas/oil samples
- Laboratory Recombination

https://www.bakerhughes.com/company/news/bhge-launches-advanced-fluid-analysis-and-sampling-while-drilling-service https://www.worldoil.com/news/2019/9/18/schlumberger-introduces-intelligent-wireline-formation-testing-platform

Reservoir Fluid Sampling Operations

Exploration, Appraisal, and Development Wells

1. Bottomhole Sampling

- Slickline, Wireline, coiled tubing conveyed
- Conventional or single phase
- Well producing (lowest possible rate) or shut-in
- Surface sample restoration and transfer to shipping bottles
- Relatively low volume
 - 600 cm³ per sampler

2. Wellhead

Surface

- Cheapest option if fluid single phase or oil/water at wellhead P&T
 - Upstream of choke

Subsea

- ROV conveyed to subsea wellhead sampling interface
 - Often on flow meter
- Remote tap of wellhead
 - Downstream of choke

Always two/three phase

- Isothermal/Isobaric pumpout
 loop
- Phase separation and isolation
 - Not phase flow fraction representative
- Wellhead isolation and control system via ROV and tree.

3. Flowline

Isokinetic

- Mist flow downstream of the choke
 - Gas condensate production
- Sample probe traverses the flowline
- Extract volumetric fractions at "isokinetic" conditions into benchtop scale separation system
 - actually 0 Δp at probe entry

Flow Meter

- Direct multiphase extraction
- Phase separation and isolation
- Not phase flow fraction representative

4. Surface Separator

Production Well Testing Operations

- Sometimes required by regulatory bodies
 - TRC, ERCB
- If p_{res} < p_{sat} GOR>>R_{si} and will NOT get a representative sample from GOR recombination
- Recombine to P_{res} and push off gas
- For unconventional wells, sample as early as possible
- Multi-rate
 Permanent Production
 Separator
- Often multi-wells commingled

•

- 1. Fluid Properties models are required to simulate reservoir, production network, and downstream refining operations and the workflows they support
- 2. Sufficient fluid property data must be measured to adequately tune the fluid models
- 3. Representative reservoir fluid sampling is the foundation for the whole work

Bad sampling or bad analysis negates good model development with potentially serious economic consequences

Thank You

www.spwla-saudi.org

SPWLA SAC WORKSHOP - CORING AND CORE ANALYSIS: CHALLENGES AND BEST PRACTICES